Národní úložiště šedé literatury Nalezeno 7 záznamů.  Hledání trvalo 0.01 vteřin. 
Heterogeneous metal-plasma polymer nanoparticles prepared by means of gas aggregation sources
Štefaníková, Radka ; Kylián, Ondřej (vedoucí práce) ; Kousal, Jaroslav (oponent)
Metodám přípravy nanočástic se aktuálně věnuje mnoho pozornosti a celý obor se po- měrně rychle vyvíjí. Většina dnes uplatňovaných přístupů vychází z tzv. chemické morké syntézy z prekurzorů. Na druhou stranu, plynové agregační zdroje nabízejí alternativní a čistě fyzikální cestu, jak nanočástice vyrábět kontrolovaným a opakovaným způsobem. Touto cestou se již podařila syntéza nanočástic z mnoha druhů materiálů, např. kovů, jejich oxidů, případně plazmových polymerů. Navíc se v nedávných studiích ukázalo, že je možné jednotlivé typy materiálů kombinovat a vyrábět tak tímto způsobem heterogenní nanočástice. Zejména pak je vzrůstající zájem o nanočástice kov/plazmový polymer. Co se týče výroby nanočástic kov/plazmový polymer, byla většina publikovaných prací zaměřena na nanočástice s kovovým jádrem a plazmově polymerním obalem. Z toho dů- vodu jsme se rozhodli studovat novou dvoukrokovou depoziční proceduru, která umožňuje zhotovení nanočástic s obměněnou strukturou, tedy plazmově polymerním jádrem a kovo- vým pláštěm. Tato metoda využívá plynové agregace pro výrobu plazmově polymerních částic - jader (v tomto případě C:H:N:O), které jsou posléze za letu pokryty naprašo- vaným kovovým materiálem (stříbro, měď a titan). Parametry výrobního procesu byly monitorovány, zejména pak pomocí měření depoziční...
Modifikace nanočástic za letu pomocí chemicky aktivního plazmatu
Libenská, Hana ; Hanuš, Jan (vedoucí práce)
Název práce: Modifikace nanočástic za letu pomocí chemicky aktivního plazmatu Autor: Hana Libenská Katedra: Katedra makromolekulární fyziky Vedoucí diplomové práce: Mgr. Jan Hanuš Ph.D., Katedra makromolekulární fyziky Abstrakt: Tato diplomová práce je zaměřena na přípravu železných nanočástic v plynovém agregačním zdroji s planárním magnetronem a jejich modifikaci za letu pomocí chemicky aktivního plazmatu. Modifikace nanočástic je prováděna za využití radiofrekvenčního výboje poté, co nanočástice vyletí z plynového agregačního zdroje. Příprava nanočástic probíhá v argonové atmosféře, do které je připouštěno nepatrné množství n-hexanu za účelem zvýšení depoziční rychlosti a časové stability procesu. Následná modifikace nanočástic probíhá pomocí výboje buď v čistém argonu, nebo ve směsích Ar s n-hexanem, ethylendiaminem, vodíkem a dusíkem. Charakterizace nanočástic byla prováděna pomocí rentgenové fotoelektronové spektroskopie, skenovací a transmisní elektronové mikroskopie, rentgenové difrakce a dalších metod. Cílem práce bylo studovat vliv přídavného plazmatu na železné nanočástice, zejména pak na oxidaci nanočástic. Z tohoto důvodu byla věnována zvláštní pozornost měření chemického složení nanočástic bezprostředně po jejich depozici bez přerušení vakua a po 16 hodinách, kdy byly nanočástice umístěny na...
Modifikace nanočástic pomocí tubulárního naprašovacího systému
Košutová, Tereza ; Hanuš, Jan (vedoucí práce)
Tato práce se zabývá možností přípravy heterogenních nanočástic, tedy nanočástic složených z více materiálů. Zvolený postup spočívá v modifikaci proletujících primárních nanočástic, vyrobených v plynovém agregačním zdroji, pomocí tubulárního naprašovacího systému. V tubulárním systému je umístěn měděný terč a pomocí magnetronového naprašování je na primární nanočástice nanášena měď. Hlavní výhodou tohoto způsobu výroby heterogenních nanočástic je nezávislost přípravy primárních nanočástic a jejich následné modifikace. V rámci práce byla provedena optimalizace přípravy nanočástic pomocí plynového agregačního zdroje vzhledem k následujícímu procesu modifikace. Dále byly charakterizovány podmínky v tubulárním naprašovacím systému. Ukázalo se, že proces probíhající v tubulárním systému je velmi komplexní a citlivý na změny provozních parametrů. Byla zjištěna silná interakce proletujících nanočástic s výbojem v tubulárním systému, která měla za následek záchyt nanočástic v plazmatu a pulzování depoziční rychlosti nanočástic. Výsledkem práce je úspěšná modifikace niklových a stříbrných nanočástic, vznik heterogenních nanočástic Ni/Cu a Ag/Cu lišících se složením, tvarem a velikostí v závislosti na podmínkách v tubulárním systému. V případě Ag/Cu se povedlo připravit aplikačně zajímavé tzv. Janusovy nanočástice.
Heterogeneous metal-plasma polymer nanoparticles prepared by means of gas aggregation sources
Štefaníková, Radka ; Kylián, Ondřej (vedoucí práce) ; Kousal, Jaroslav (oponent)
Metodám přípravy nanočástic se aktuálně věnuje mnoho pozornosti a celý obor se po- měrně rychle vyvíjí. Většina dnes uplatňovaných přístupů vychází z tzv. chemické morké syntézy z prekurzorů. Na druhou stranu, plynové agregační zdroje nabízejí alternativní a čistě fyzikální cestu, jak nanočástice vyrábět kontrolovaným a opakovaným způsobem. Touto cestou se již podařila syntéza nanočástic z mnoha druhů materiálů, např. kovů, jejich oxidů, případně plazmových polymerů. Navíc se v nedávných studiích ukázalo, že je možné jednotlivé typy materiálů kombinovat a vyrábět tak tímto způsobem heterogenní nanočástice. Zejména pak je vzrůstající zájem o nanočástice kov/plazmový polymer. Co se týče výroby nanočástic kov/plazmový polymer, byla většina publikovaných prací zaměřena na nanočástice s kovovým jádrem a plazmově polymerním obalem. Z toho dů- vodu jsme se rozhodli studovat novou dvoukrokovou depoziční proceduru, která umožňuje zhotovení nanočástic s obměněnou strukturou, tedy plazmově polymerním jádrem a kovo- vým pláštěm. Tato metoda využívá plynové agregace pro výrobu plazmově polymerních částic - jader (v tomto případě C:H:N:O), které jsou posléze za letu pokryty naprašo- vaným kovovým materiálem (stříbro, měď a titan). Parametry výrobního procesu byly monitorovány, zejména pak pomocí měření depoziční...
Modifikace nanočástic pomocí tubulárního naprašovacího systému
Košutová, Tereza ; Hanuš, Jan (vedoucí práce)
Tato práce se zabývá možností přípravy heterogenních nanočástic, tedy nanočástic složených z více materiálů. Zvolený postup spočívá v modifikaci proletujících primárních nanočástic, vyrobených v plynovém agregačním zdroji, pomocí tubulárního naprašovacího systému. V tubulárním systému je umístěn měděný terč a pomocí magnetronového naprašování je na primární nanočástice nanášena měď. Hlavní výhodou tohoto způsobu výroby heterogenních nanočástic je nezávislost přípravy primárních nanočástic a jejich následné modifikace. V rámci práce byla provedena optimalizace přípravy nanočástic pomocí plynového agregačního zdroje vzhledem k následujícímu procesu modifikace. Dále byly charakterizovány podmínky v tubulárním naprašovacím systému. Ukázalo se, že proces probíhající v tubulárním systému je velmi komplexní a citlivý na změny provozních parametrů. Byla zjištěna silná interakce proletujících nanočástic s výbojem v tubulárním systému, která měla za následek záchyt nanočástic v plazmatu a pulzování depoziční rychlosti nanočástic. Výsledkem práce je úspěšná modifikace niklových a stříbrných nanočástic, vznik heterogenních nanočástic Ni/Cu a Ag/Cu lišících se složením, tvarem a velikostí v závislosti na podmínkách v tubulárním systému. V případě Ag/Cu se povedlo připravit aplikačně zajímavé tzv. Janusovy nanočástice.
Modifikace nanočástic za letu pomocí chemicky aktivního plazmatu
Libenská, Hana ; Hanuš, Jan (vedoucí práce) ; Kohout, Jaroslav (oponent)
Název práce: Modifikace nanočástic za letu pomocí chemicky aktivního plazmatu Autor: Hana Libenská Katedra: Katedra makromolekulární fyziky Vedoucí diplomové práce: Mgr. Jan Hanuš Ph.D., Katedra makromolekulární fyziky Abstrakt: Tato diplomová práce je zaměřena na přípravu železných nanočástic v plynovém agregačním zdroji s planárním magnetronem a jejich modifikaci za letu pomocí chemicky aktivního plazmatu. Modifikace nanočástic je prováděna za využití radiofrekvenčního výboje poté, co nanočástice vyletí z plynového agregačního zdroje. Příprava nanočástic probíhá v argonové atmosféře, do které je připouštěno nepatrné množství n-hexanu za účelem zvýšení depoziční rychlosti a časové stability procesu. Následná modifikace nanočástic probíhá pomocí výboje buď v čistém argonu, nebo ve směsích Ar s n-hexanem, ethylendiaminem, vodíkem a dusíkem. Charakterizace nanočástic byla prováděna pomocí rentgenové fotoelektronové spektroskopie, skenovací a transmisní elektronové mikroskopie, rentgenové difrakce a dalších metod. Cílem práce bylo studovat vliv přídavného plazmatu na železné nanočástice, zejména pak na oxidaci nanočástic. Z tohoto důvodu byla věnována zvláštní pozornost měření chemického složení nanočástic bezprostředně po jejich depozici bez přerušení vakua a po 16 hodinách, kdy byly nanočástice umístěny na...
Modifikace nanočástic pomocí tubulárního naprašovacího systému
Kretková, Tereza ; Hanuš, Jan (vedoucí práce) ; Matoušek, Jindřich (oponent)
Tato práce se zabývá možností přípravy heterogenních nanočástic, tedy nanočástic složených z více materiálů. Zvolený postup spočívá v modifikaci proletujících primárních nanočástic, vyrobených v plynovém agregačním zdroji, pomocí tubulárního naprašovacího systému. V tubulárním systému je umístěn měděný terč a pomocí magnetronového naprašování je na primární nanočástice nanášena měď. Hlavní výhodou tohoto způsobu výroby heterogenních nanočástic je nezávislost přípravy primárních nanočástic a jejich následné modifikace. V rámci práce byla provedena optimalizace přípravy nanočástic pomocí plynového agregačního zdroje vzhledem k následujícímu procesu modifikace. Dále byly charakterizovány podmínky v tubulárním naprašovacím systému. Ukázalo se, že proces probíhající v tubulárním systému je velmi komplexní a citlivý na změny provozních parametrů. Byla zjištěna silná interakce proletujících nanočástic s výbojem v tubulárním systému, která měla za následek záchyt nanočástic v plazmatu a pulzování depoziční rychlosti nanočástic. Výsledkem práce je úspěšná modifikace niklových a stříbrných nanočástic, vznik heterogenních nanočástic Ni/Cu a Ag/Cu lišících se složením, tvarem a velikostí v závislosti na podmínkách v tubulárním systému. V případě Ag/Cu se povedlo připravit aplikačně zajímavé tzv. Janusovy nanočástice.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.